当a≤0时,x∈(0,+∞)时,g′(x)>0,函数g(x)单调递增;
当a>0时,x∈时,g′(x)>0,函数g(x)单调递增,x∈时,函数g(x)单调递减.
所以当a≤0时,g(x)的单调增区间为(0,+∞);
当a>0时,g(x)的单调增区间为,
单调减区间为.
(2)由(1)知,f′(1)=0.
①当a≤0时,f′(x)单调递增,
所以当x∈(0,1)时,f′(x)<0,f(x)单调递减.
当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.
所以f(x)在x=1处取得极小值,不合题意.
②当01,由(1)知f′(x)在内单调递增,可得当x∈(0,1)时,f′(x)<0,x∈时,f′(x)>0.
所以f(x)在(0,1)内单调递减,在内单调递增,
所以f(x)在x=1处取得极小值,不合题意.
③当a=时,=1,f′(x)在(0,1)内单调递增,在(1,+∞)内单调递减,
所以当x∈(0,+∞)时,f′(x)≤0,f(x)单调递减,不合题意.
④当a>时,0<<1,
当x∈时,f′(x)>0,f(x)单调递增,
当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,
所以f(x)在x=1处取极大值,符合题意.
综上可知,实数a的取值范围为.
8.已知函数y=x3+3ax2+3bx+c在x=2处有极值,且其图象在x=1处的切线与