2018-2019学年人教B版必修4 3.3三角函数的积化和差与和差化积 作业5
2018-2019学年人教B版必修4 3.3三角函数的积化和差与和差化积 作业5第4页

A.sin B.sin C. D.

解析:原式=

=.

答案:C

5.已知α-β=且cosα-cosβ=,则cos(α+β)等于( )

A. B. C. D.

解析:由cosα-cosβ=,得

-2sin ·sin =,

即sin =,

∴cos(α+β)=1-2sin2 =1-2×()2=.

答案:C

6.cos20°+cos60°+cos100°+cos140°的值为_________________.

解析:cos20°+cos60°+cos100°+cos140°

=cos20°++2cos120°cos20°

=cos20°+-cos20°=.

答案:

7.若cos2α-cos2β=m,则sin(α+β)·sin(α-β)=________________.

解析:sin(α+β)·sin(α-β)=[cos2α-cos2β]

=[(2cos2α-1)-(2cos2β-1)]=cos2β-cos2α=-m.

答案:-m

8.若x为锐角三角形的内角,则函数y=sin(x+)+sinx的值域为______________.

解析:y=2sin(x+)cos=sin(x+),

由条件知<x+<,