=\s\up6(→(→)2+\s\up6(→(→)2+\s\up6(→(→)2+2(\s\up6(→(→)·\s\up6(→(→)+\s\up6(→(→)·\s\up6(→(→)+\s\up6(→(→)·\s\up6(→(→))=3×62+2×62×cos 60°=144,
所以CD=12.
答案:12
8.如图,已知正三棱柱ABCA1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.
解析:不妨设棱长为2,则\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→),\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→),
cos〈\s\up6(→(→),\s\up6(→(→)〉=\s\up6(→(BB1,\s\up6(→)
==0,所以〈\s\up6(→(→),\s\up6(→(→)〉=90°.
答案:90°
9.已知长方体ABCDA1B1C1D1中,AB=AA1=2,AD=4,E为侧面AA1B1B的中心,F为A1D1的中点.
求下列向量的数量积.
(1)\s\up6(→(→)·\s\up6(→(→);
(2)\s\up6(→(→)·\s\up6(→(→).
解:
如图所示,设\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c,
则|a|=|c|=2,|b|=4,a·b=b·c=c·a=0.
(1)\s\up6(→(→)·\s\up6(→(→)=\s\up6(→(→)·(\s\up6(→(→)+\s\up6(→(→))
=b·
=|b|2=42=16.
(2)\s\up6(→(→)·\s\up6(→(→)=(\s\up6(→(→)+\s\up6(→(→))·(\s\up6(→(→)+\s\up6(→(→))