∴f′(x)>0.
∴f(x)递增,∴f(x)min=f(0)=1.
【答案】 1
7.已知函数f(x)=x3-ax2+b(a,b为实数,且a>1)在区间[-1,1]上的最大值为1,最小值为-1,则a=________,b=________.
【解析】 ∵f′(x)=3x2-3ax=3x(x-a),
令f′(x)=0,解得x1=0,x2=a.
∵a>1,
∴当x变化时,f′(x)与f(x)的变化情况如下表:
x -1 (-1,0) 0 (0,1) 1 f′(x) + 0 - f(x) -1-a
+b 极大
值b 1-a
+b 由题意得b=1.
f(-1)=-,f(1)=2-,
f(-1)<f(1),
∴-=-1,∴a=.
【答案】 1
8.设函数f(x)=ax3-3x+1(x∈R),若对任意的x∈(0,1]都有f(x)≥0成立,则实数a的取值范围为________. 【导学号:26160094】
【解析】 ∵x∈(0,1],
∴f(x)≥0可化为a≥-.