6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.
解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).
答案:7
7.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.
解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.
答案:54
8.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.
解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),
即所求的不同的直线共有22条.
答案:22
9.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.
(1)选其中一人为负责人,有多少种不同的选法?
(2)每班选一名组长,有多少种不同的选法?
(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?
解:(1)分四类:第一类,从一班学生中选1人,有7种选法;
第二类,从二班学生中选1人,有8种选法;
第三类,从三班学生中选1人,有9种选法;
第四类,从四班学生中选1人,有10种选法.
所以,共有不同的选法N=7+8+9+10=34(种).
(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).
(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;
从一、三班学生中各选1人,有7×9种不同的选法;
从一、四班学生中各选1人,有7×10种不同的选法;