(2)(1+i).
[解] (1)原式=1-i2+(-1)+i=1+i.
(2)原式=(1+i)
=(1+i)
=--i+i-
=-+i.
10.已知复数z=(1-i)2+1+3i,若z2+az+b=1-i(a,b∈R),求b+ai的共轭复数.
[解] z=(1-i)2+1+3i=-2i+1+3i=1+i,
由z2+az+b=1-i,得
(1+i)2+a(1+i)+b=1-i,
∴a+b+i(a+2)=1-i(a,b∈R),
∴
解得
则b+ai=4-3i,
则b+ai的共轭复数是4+3i.
[能力提升练]
1.复数(1-i)-(2+i)+3i等于( )
A.-1+i B.1-i
C.i D.-i