§2 角的概念的推广
5分钟训练(预习类训练,可用于课前)
1.任意角的形成:角可以看成是_____________而成的,射线的端点叫做_____________,旋转开始的射线叫做_____________,旋转终止的射线叫做_____________,按逆时针方向旋转形成的角叫做_____________,按顺时针方向旋转形成的角叫做_____________,没有作任何旋转时,这样的角叫做_____________.
答案:平面内一条射线绕着端点从一个位置旋转到另一个位置 角的顶点 角的始边 角的终边 正角 负角 零角
2.在体操、花样滑冰、跳台跳水比赛中,常常听到"转体三周""转体两周半"等说法,像这种动作名称表示的角是多大?
解:如果逆时针转体,分别是360°×3=1 080°和360°×2.5=900°;若顺时针转体,则分别为-1 080°和-900°.
3.在0°-360°之间,求出与下列各角终边相同的角,并判定下列各角是哪个象限的角.
(1)908°28′; (2)-734°.
解:(1)908°28′=188°28′+2×360°,则188°28′即为所求的角,因为它是第三象限角,从而908°28′也是第三象限的角.
(2)-734°=346°-3×360°,则346°即为所求的角,因为它是第四象限角,从而-734°也是第四象限角.
4.在-720°-720°之间,写出与60°角终边相同的角的集合S.
解:与60°终边相同的角的集合为{α|α=60°+k·360°,k∈Z},
令-720°≤60°+k·360°<720°,
得k=-2,-1,0,1,相应的角为-660°,-300°,60°,420°,
从而S={-660°,-300°,60°,420°}.
10分钟训练(强化类训练,可用于课中)
1.下列说法中,正确的有( )
①第一象限的角一定是锐角 ②终边相同的角一定相等 ③相等的角终边一定相同 ④小于90°的角一定是锐角 ⑤钝角的终边在第二象限
A.1个 B.2个
C.3个 D.4个
解析:终边相同的角,有的正有的负,不一定相等;锐角指的是在(0°,90°)内的正角;小于90°的角可以是负角,所以二者不同.第一象限的角是指终边落在第一象限的角,它可正可负,可大可小,故并非仅是锐角,所以①不正确;同理,可知②④均不正确;③⑤正确.
答案:B
2.下列各角中属于第二象限的是( )
A.-290° B.585°
C.-950° D.182°
解析:将角写成k·360°+α(k∈Z)(0°≤α<360°)(k∈Z)的形式,α与它在同一象限.将超过[-360°,360°]范围内的角化为在这个范围内即可判断.易知-290°在第一象限,182°在第三象限,585°=360°+225°,在第三象限,-950°=-720°-230°在第二象限.
答案:C
3.若A={α|α=k·360°,k∈Z},B={α|α=k·180°,k∈Z},C={α|α=k·90°,k∈Z},则下列关系正确的是( )
A.ACB B.BAC
C.CBA D.ABC