6.若tan(2x"-" π/6)≤1,则x的取值范围是 .
解析令z=2x-π/6,满足tan z≤1的z值是-π/2+kπ 即-π/2+kπ<2x-π/6≤π/4+kπ,k∈Z. 解得-π/6+1/2kπ 答案("-" π/6+1/2 kπ"," 5π/24+1/2 kπ],k∈Z 7.直线y=a与y=tan x的图像的相邻两个交点的距离是 . 解析由题意知,相邻两个交点间的距离即为一个周期的长度,故为π. 答案π 8.给出下列四个结论: ①sin-π/18>sin-π/10;②cos-25π/4>cos-17π/4; ③tan 5π/9>tan 17π/18;④tan π/5>sin π/5. 其中正确结论的序号是 . 解析函数y=sin x是-π/2,0上的增函数,0>-π/18>-π/10>-π/2,所以sin-π/18>sin-π/10,①正确;cos-25π/4=cos-6π-π/4=cos π/4,cos-17π/4=cos-4π-π/4=cos π/4,所以cos-25π/4=cos-17π/4,②不正确;函数y=tan x是π/2,π上的增函数,π/2<5π/9<17π/18<π,所以tan 5π/9 答案①④ 9.已知角α的终边上一点P的坐标为(-√3,y)(y≠0),且sin α=√2/4y.求tan α. 解由题意r2=x2+y2=3+y2, 由三角函数定义sin α=y/r=y/√(3+y^2 )=√2/4y, ∴y=±√5,∴tan α=y/("-" √3),即tan α=±√15/3. 10.利用函数图像解不等式-1≤tan x≤√3/3. 解作出函数y=tan x,x∈("-" π/2 "," π/2)的图像,如图所示. 观察图像可得:在区间("-" π/2 "," π/2)上,自变量x应满足-π/4≤x≤π/6. 由正切函数的周期性可知,不等式的解集为 {x├|"-" π/4+kπ≤x≤π/6+kπ"," k"∈" Z┤}. 11.求函数y=tan 2x的定义域、值域、单调区间,并作出它在区间[-π,π]内的图像. 解(1)要使函数y=tan 2x有意义, 只需2x≠π/2+kπ(k∈Z),即x≠π/4+kπ/2(k∈Z), ∴函数y=tan 2x的定义域为 {x├|x≠π/4+kπ/2 "," k"∈" Z}┤. (2)设t=2x,由x≠π/4+kπ/2(k∈Z),知t≠π/2+kπ(k∈Z).∴y=tan t的值域为(-∞,+∞), 即y=tan 2x的值域为(-∞,+∞).