【答案】 6
三、解答题
9.等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列.
(1)求{an}的公比q;
(2)若a1-a3=3,求Sn.
【解】 (1)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2),
由于a1≠0,故2q2+q=0.
又q≠0,从而q=-.
(2)由已知可得a1-a12=3,
故a1=4.
从而Sn==.
10.已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+b2+b3+...+bn=bn+1-1(n∈N*).
(1)求an与bn;
(2)记数列{anbn}的前n项和为Tn,求Tn.
【解】 (1)由a1=2,an+1=2an,得an=2n(n∈N*).
由题意知:
当n=1时,b1=b2-1,故b2=2.
当n≥2时,bn=bn+1-bn.
整理得=,
所以bn=n(n∈N*).