答案:A
7.函数f(x)=ax4-4ax3+b(a>0),x∈[1,4],f(x)的最大值为3,最小值为-6,则a+b= .
解析:f'(x)=4ax3-12ax2.
令f'(x)=0,得x=0(舍去),或x=3.
所以f(x)的最小值为f(3)=b-27a.
又f(1)=b-3a,f(4)=b,
∴f(4)为最大值,
∴{■(b=3"," @b"-" 27a="-" 6"," )┤解得{■(a=1/3 "," @b=3"," )┤
∴a+b=10/3.
答案:10/3
8.f(x)=x-ln x在区间(0,e]上的最小值为 .
解析:∵f'(x)=1-1/x=(x"-" 1)/x,
∵x>0,∴当1
此时f(x)是增加的,当0 ∴f(x)min=f(1)=1-ln 1=1. 答案:1 9.已知函数f(x)=ln x-a2x2+ax(a∈R),若函数f(x)在区间[1,+∞)上是减少的,则实数a的取值范围是 . 解析:f'(x)=1/x-2a2x+a,当a=0时,f'(x)=1/x>0, ∴f(x)在[1,+∞)上是增加的,不合题意; 当a≠0时,要使函数f(x)在区间[1,+∞)上是减少的,只需f'(x)≤0在区间[1,+∞)上恒成立. ∵x>0,∴只需2a2x2-ax-1≥0恒成立, ∴{■(a/(4a^2 )≤1"," @2a^2 "-" a"-" 1≥0"." )┤ 解得a≥1或a≤-1/2. ∴所求实数a的取值范围是("-∞,-" 1/2]∪[1,+∞). 答案:("-∞,-" 1/2]∪[1,+∞) 10.已知函数f(x)=-x3+ax2+bx,在区间[-2,1]内,当x=-1时,取得极小值,当x=2/3时,取得极大值. (1)求函数f(x)的表达式; (2)求函数f(x)在[-2,1]上的最大值与最小值. 解:(1)依题意,得f'(x)=-3x2+2ax+b, 由{■(f"'(-" 1")" =0"," @f"'" (2/3)=0"," )┤解得{■(a="-" 1/2 "," @b=2"," )┤ 故f(x)=-x3-1/2x2+2x. (2)因为f(-1)=-3/2,f(2/3)=22/27,f(-2)=2, f(1)=1/2,所以f(x)max=2,f(x)min=-3/2. 11.a为正常数,求函数y=e-x-e-2x在区间[0,a]上的最大值、最小值. 解:∵y=e-x-e-2x,∴y'=-e-x+2e-2x=e-2x(2-ex). 令y'=0,则x=ln 2. ∵x∈[0,a],∴只研究x≥0的情况,当x变化时,y,y'的变化情况如下表: x
0
(0,ln 2)
ln 2
(ln 2,+∞)
y'
+
0
-
y
0
↗
极大值
↘