由-1≤z2≤1,得-1≤2a≤1,
解得-2(1)≤a≤2(1),
即z1的实部的取值范围是[-2(1),2(1)].
(2)ω=1+z1(1-z1)=1+a+bi(1-a-bi)
=(1+a(1-a2-b2-2bi)=-a+1(b)i.
因为a∈[-2(1),2(1)],b≠0.所以ω为纯虚数.
6.已知z为虚数,z+z-2(9)为实数.
(1)若z-2为纯虚数,求虚数z.
(2)求|z-4|的取值范围.
[解析] (1)设z=x+yi(x,y∈R,y≠0),
则z-2=x-2+yi,
由z-2为纯虚数得x=2,所以z=2+yi,则z+z-2(9)=2+yi+yi(9)=2+(y-y(9))i∈R,得y-y(9)=0,y=±3,所以z=2+3i或z=2-3i.
(2)因为z+z-2(9)=x+yi+x+yi-2(9)=x+(x-2(9(x-2)+[y-(x-2(9y)]i∈R,
所以y-(x-2(9y)=0,
因为y≠0,
所以(x-2)2+y2=9,
由(x-2)2<9得x∈(-1,5),
所以|z-4|=|x+yi-4|
=
=
=∈(1,5).