2018-2019学年鲁科版必修2 匀速圆周运动快慢的描述 第1课时 作业
2018-2019学年鲁科版必修2  匀速圆周运动快慢的描述  第1课时  作业第3页

  半径关系为3rA=2rC=4rB,设皮带不打滑,求三轮边缘上的点A、B、C的线速度之比、角速度之比、周期之比。

  

  [解析] 由题意可知,A、B两轮由皮带传动,皮带不打滑,故vA=vB,B、C在同一轮轴上,同轴转动,故ωB=ωC。由v=ωr得vB∶vC=rB∶rC=2∶4=1∶2,所以vA∶vB∶vC=1∶1∶2;由ω=得ωA∶ωB=rB∶rA=3∶4,所以ωA∶ωB∶ωC=3∶4∶4;由ω=可知,周期与角速度成反比,即TA∶TB∶TC=4∶3∶3。

  [答案] vA∶vB∶vC=1∶1∶2 ωA∶ωB∶ωC=3∶4∶4 TA∶TB∶TC=4∶3∶3

  8.如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在过O1、O2的轴上。其中过O1的轴与电动机相连接,此轴转速为n1,求:

  

  (1)A、B两齿轮的半径r1、r2之比;

  (2)B齿轮的转速n2。

  解析:(1)在齿轮传动装置中,各齿轮在相同时间内转过的"齿"是相同的,因此齿轮的齿数与周长成正比,故r1∶r2=z1∶z2。

  (2)在齿轮传动进行时,每个啮合的齿轮边缘处线速度大小相等,因此齿轮传动满足齿轮转速与齿数成反比,即=,所以n2=。

  答案:(1)r1∶r2=z1∶z2 (2)n2=