(4)"至多有1人击中目标"的对立事件是"2人都击中目标",故所求概率为.
试题解析:记"甲射击次,击中目标"为事件,"乙射击次,击中目标"为事件,则与, 与, 与, 与为相互独立事件,
(1)人都射中的概率为:
,
∴人都射中目标的概率是.
(2)"人各射击次,恰有人射中目标"包括两种情况:一种是甲击中、乙未击中(事件发生),另一种是甲未击中、乙击中(事件发生)根据题意,事件与互斥,根据互斥事件的概率加法公式和相互独立事件的概率乘法公式,所求的概率为:
∴人中恰有人射中目标的概率是.
(3)(法1):2人至少有1人射中包括"2人都中"和"2人有1人不中"2种情况,其概率为.
(法2):"2人至少有一个击中"与"2人都未击中"为对立事件,
2个都未击中目标的概率是,
∴"两人至少有1人击中目标"的概率为.
(4)(法1):"至多有1人击中目标"包括"有1人击中"和"2人都未击中",
故所求概率为:
.
(法2):"至多有1人击中目标"的对立事件是"2人都击中目标",
故所求概率为
13.一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:
(1)第1次取到黑球的概率;