2018-2019学年北师大版必修四 习题课——三角恒等变换公式的综合应用 课时作业
2018-2019学年北师大版必修四     习题课——三角恒等变换公式的综合应用  课时作业第2页

  由-π/2+2kπ≤2x-π/4≤π/2+2kπ,k∈Z,

  解得-π/8+kπ≤x≤3π/8+kπ,k∈Z,即增区间为["-" π/8+kπ"," 3π/8+kπ],k∈Z,所以P3正确.

  由2x-π/4=kπ,k∈Z,得x=k/2π+π/8,k∈Z,

  所以图像的对称中心为(k/2 π+π/8 ",-" 1),k∈Z,所以P4正确,所以选B.

答案B

6.若sinα/2=√(1+sinα)-√(1"-" sinα),0≤α≤π,则tan α的值是          .

解析√(1+sinα)-√(1"-" sinα)=|sin α/2+cos α/2|-|sin α/2 "-" cos α/2|.∵0≤α≤π,∴0≤α/2≤π/2.

  当0≤α/2≤π/4时,cosα/2≥sinα/2,∴原式=2sinα/2.

  又原式=sinα/2,∴sinα/2=0,∴tanα/2=0,

  ∴tan α=(2tan α/2)/(1"-" tan^2 α/2)=0.

  当π/4<α≤π/2时,cosα/2

  ∴原式=2cosα/2.

  又原式=sinα/2,∴tanα/2=2,

  ∴tan α=-4/3.

答案0或-4/3

7.函数f(x)=4cos2x/2cos(π/2 "-" x)-2sin x-|ln(x+1)|的零点个数为     .

解析令f(x)=4·(1+cosx)/2·sin x-2sin x-|ln(x+1)|=sin 2x-|ln(x+1)|=0,即sin 2x=|ln(x+1)|,在同一坐标系作出y=sin 2x与y=|ln(x+1)|的图像.

  由图像知共2个交点,故f(x)的零点个数为2.

答案2

8.已知tan α=2.

(1)求tan(α+π/4)的值;

(2)求sin2α/(sin^2 α+sinαcosα"-" cos2α"-" 1)的值.

解(1)tan(α+π/4)=(tanα+tan π/4)/(1"-" tanαtan π/4)

  =(tanα+1)/(1"-" tanα)=(2+1)/(1"-" 2)=-3.

  (2)sin2α/(sin^2 α+sinαcosα"-" cos2α"-" 1)

  =2sinαcosα/(sin^2 α+sinαcosα"-(" 2cos^2 α"-" 1")-" 1)

  =2sinαcosα/(sin^2 α+sinαcosα"-" 2cos^2 α)

  =2tanα/(tan^2 α+tanα"-" 2)=(2×2)/(2^2+2"-" 2)=1.

9.导学号93774100已知5sin β=sin(2α+β),求证:2tan(α+β)=3tan α.

证明5sin β=5sin[(α+β)-α]

  =5sin(α+β)cos α-5cos(α+β)sin α,

  sin(2α+β)=sin[(α+β)+α]

  =sin(α+β)cos α+cos(α+β)sin α.

∵5sin β=sin(2α+β),∴5sin(α+β)cos α-5cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴4sin(α+β)cos α=6cos(α+β)sin α,∴2tan(α+β)=3tan α.