【100所名校】西藏林芝市第一中学2019届高三上学期第三次月考数学(文)试卷 Word版含解析
【100所名校】西藏林芝市第一中学2019届高三上学期第三次月考数学(文)试卷 Word版含解析第5页

  由sinα的值及α为第二象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.

  【详解】

  ∵sinα=3/5,且α为第二象限角,

  ∴cosα=-√(1-sin^2 α)=-4/5,

  则tanα=sinα/cosα=-3/4,故答案为-3/4.

  【点睛】

  本题主要考查,同角三角函数之间的关系的应用,属于中档题. 同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换.

  14.14

  【解析】

  【分析】

  由a_1=2,a_4=6,可求出d=4/3,从而利用等差数列的通项公式可得结果.

  【详解】

  因为a_1=2,a_4=6,

  所以a_1+3d=6,

  即2+3d=6,解得d=4/3,

  可得a_10=a_1+9d=2+12=14,

  故答案为14.

  【点睛】

  本题主要考查等差数列通项公式基本量运算,意在考查对基础知识的理解与应用,属于简单题.

  15.-1

  【解析】

  【分析】

  由可设a ⃑=λb ⃑(λ<0),则{█(m=λ@1=λm) ,从而可得m的值.

  【详解】

  ∵向量a ⃑与b ⃑共线且方向相反,

  由共线向量定理可设a ⃑=λb ⃑(λ<0),

  即{█(m=λ@1=λm) ,解得m=±1,

  由于λ<0, ∴m=-1,故答案为-1.

  【点睛】

  本题主要考查向量共线的性质以及反向向量的定义,意在考查对基本概念与基本性质掌握的熟练程度,属于简单题.

  16.{2018,2019}

  【解析】

  【分析】

  由表格中数据发现规律:集合A@B是A∪B中的元素再去掉A∩B中的元素组成的,求出A∪B与A∩B,从而可得结果.

  【详解】

  由题意可知,集合A@B是A∪B中的元素再去掉A∩B中的元素组成的,

  已知A={-2009,0,2018},B={-2009,0,2019},

  则A∪B={-2009,0,2018,2019},A∩B={-2009} ,

  则 A@B={2018,2019},故答案为{2018,2019}.

  【点睛】

  本题主要考查归纳推理的应用,集合的交集与并集的定义以及新定义问题,属于难题. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).

  17.(1)m=5/9,n=8/9; (2)-16/13.

  【解析】

  【分析】

  (1)由a ⃑=mb ⃑+nc ⃑及已知得(3,2)=m(-1,2)+n(4,1),由此列方程组能求出实数m,n;(2)由(a ⃑+kc ⃑)//(2b ⃑-a ⃑) ,可得2×(3+4k)-(-5)×(2+k)=0,由此能求出k的值.

  【详解】

  (1)由题意得(3,2)=m(-1,2)+n(4,1),所以{█(-m+4n=3@2m+n=2) ,解得m=5/9,n=8/9;

  (2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),

  ∴2×(3+4k)-(-5)×(2+k)=0.∴k=-16/13.

  【点睛】

本题主要考查相等向量与共线向量的性质,属于简单题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用x_1 y_2-x_2 y_1=0解答;(2)两向量垂直,利用x_1 x_2+y_1 y_2=0解答.