=a9=17,b6=a=a17=33.
6.已知数列{an}满足a1=,an+1=an,得an=________.
解析:由条件知=,分别令n=1,2,3,...,n-1,代入上式得n-1个等式,即···...·=×××...×⇒=.又∵a1=,∴an=.
答案:
7.数列{an}的通项公式为an=n2-6n,则它最小项的值是________.
解析:an=n2-6n=(n-3)2-9,∴当n=3时,an取得最小值-9.
答案:-9
8.已知数列{an},an=bn+m(b<0,n∈N+),满足a1=2,a2=4,则a3=________.
解析:∵∴
∴an=(-1)n+3,∴a3=(-1)3+3=2.
答案:2
9.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.
(1)a1=0,an+1=an+2n-1(n∈N+);
(2)a1=1,an+1=an+(n∈N+);
(3)a1=2,a2=3,an+2=3an+1-2an(n∈N+).
解:(1)a1=0,a2=1,a3=4,a4=9.猜想an=(n-1)2.
(2)a1=1,a2=,a3=,a4=.猜想an=.
(3)a1=2,a2=3,a3=5,a4=9.猜想an=2n-1+1.
10.已知函数f(x)=x-.数列{an}满足f(an)=-2n,且an>0.求数列{an}的通项公式.
解:∵f(x)=x-,∴f(an)=an-,
∵f(an)=-2n.∴an-=-2n,
即a+2nan-1=0.∴an=-n±.
∵an>0,∴an=-n.