即bn=,则数列{bn}为首项b1==3a1=3,公差为1的等差数列,
所以bn=3+(n-1)×1=n+2,
所以an=.
答案:B
5.若数列{an}的前n项和为Sn,且an=2Sn-3,则{an}的通项公式是________.
解析:由an=2Sn-3得an-1=2Sn-1-3(n≥2),两式相减得an-an-1=2an(n≥2),
∴an=-an-1(n≥2),=-1(n≥2).
故{an}是公比为-1的等比数列,
令n=1得a1=2a1-3,∴a1=3,故an=3·(-1)n-1.
答案:an=3·(-1)n-1
6.已知数列{an}满足a1=1,an+1=an+2n-1(n∈N*),则an=________.
解析:∵a1=1,an+1=an+2n-1(n∈N*),∴an=(an-an-1)+(an-1-an-2)+...+(a2-a1)+a1=(2n-3)+(2n-5)+...+1+1=+1=n2-2n+2.
答案:n2-2n+2
7.在数列{an}中,a1=2,an=3an-1+2(n≥2,n∈N*),则通项an=________.
解析:由an=3an-1+2,得an+1=3(an-1+1)(n≥2).∵a1=2,∴a1+1=3≠0,∴数列{an+1}是以3为首项,3为公比的等比数列,∴an+1=3·3n-1=3n,即an=3n-1.
答案: 3n-1
8.已知数列{an}满足a1=2,(n+1)an=(n-1)an-1(n≥2,n∈N*),则=________,数列{an}的通项公式为________.
解析:当n≥2时,由(n+1)an=(n-1)an-1得=,
故=·=×=.
an=···...···a1=×××...×××2=×2=.又a1=