最终它们保持相对静止,设A减速到零时,木板的速度为v1,最终它们的共同速度为v2,取水平向右为正方向,则Mv-mv=Mv1,Mv1=(M+m)v2,可得v1= m/s,v2=2 m/s,所以在小木块A做加速运动的时间内,木板速度大小应大于2.0 m/s而小于 m/s,只有选项B正确。
★5.(2018·厦门质检)如图所示,两辆质量均为M的小车A和B置于光滑的水平面上,有一质量为m的人静止站在A车上,两车静止。若这个人自A车跳到B车上,接着又跳回A车并与A车相对静止。则此时A车和B车的速度之比为( )
A. B.
C. D.
解析:选C 规定向右为正方向,则由动量守恒定律有:0=MvB-(M+m)vA,得=,故C正确。
[B级--中档题目练通抓牢]
6.(2018·桂林质检)如图所示,光滑水平面上有大小相同的A、B两个小球在同一直线上运动。两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为8 kg·m/s,运动过程中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( )
A.右方为A球,碰撞后A、B两球的速度大小之比为 2∶3
B.右方为A球,碰撞后A、B两球的速度大小之比为 1∶6
C.左方为A球,碰撞后A、B两球的速度大小之比为 2∶3
D.左方为A球,碰撞后A、B两球的速度大小之比为 1∶6
解析:选C A、B 两球发生碰撞,规定向右为正方向,由动量守恒定律可得ΔpA=-ΔpB,由于碰后A球的动量增量为负值,所以右边不可能是A球,若是A球则动量的增量应该是正值,因此碰撞后A球的动量为4 kg·m/s,所以碰撞后B球的动量是增加的,为12 kg·m/s,由于mB=2mA,所以碰撞后A、B两球速度大小之比为2∶3,故C正确。
★7.(2018·北京丰台区质检)如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球半径,落地瞬间,B先与地面碰撞,后与A碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向、碰撞时间均可忽略不计。已知m2=3m1,则A反弹后能达到的高度为( )
A.h B.2h
C.3h D.4h
解析:选D 所有的碰撞都是弹性碰撞,所以不考虑能量损失。设竖直向上为正方向,根据机械能守恒定律和动量守恒定律可得,(m1+m2)gh=(m1+m2)v2