即(x-)+yi=-1+i.
根据复数相等的定义,得
解得∴z=i.
法二:由已知可得z=(|z|-1)+i,
等式两边取模,得|z|=.
两边平方,得|z|2=|z|2-2|z|+1+1⇒|z|=1.
把|z|=1代入原方程,可得z=i.
8.解:a2-2a+4=(a-1)2+3≥3,-(a2-2a+2)=-(a-1)2-1≤-1.由实部大于0,虚部小于0可知,复数z的对应点在复平面的第四象限内.
设z=x+yi(x,y∈R),
则x=a2-2a+4,y=-(a2-2a+2),
消去a2-2a,得y=-x+2(x≥3).
所以复数z的对应点的轨迹是以(3,-1)为端点,-1为斜率,在第四象限的一条射线.