2018-2019学年人教B版选修2-1 用向量计算空间角 课时作业
2018-2019学年人教B版选修2-1       用向量计算空间角  课时作业第3页

  【答案】12/5

7.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=4,AD=2√2,CD=2,PA⊥平面ABCD,PA=4.

(1)求证:BD⊥平面PAC.

(2)点Q为线段PB的中点,求直线QC与平面PAC所成角的正弦值.

  【解析】建立如图所示的空间直角坐标系A-xy .

  

  则点A(0,0,0),D(0,2√2,0),B(4,0,0),P(0,0,4),C(2,2√2,0),Q(2,0,2).

  (1)∵(BD) ⃗=(-4,2√2,0),(AP) ⃗=(0,0,4),(AC) ⃗=(2,2√2,0),

  ∴(BD) ⃗·(AP) ⃗=0,(BD) ⃗·(AC) ⃗=-8+8=0,

  ∴BD⊥AP,BD⊥AC.

  又∵AP∩AC=A,

  ∴BD⊥平面PAC.

  (2)(CQ) ⃗=(0,-2√2,2).

  设平面PAC的法向量为n=(x,y, ),

  则{■(n"·" (AP) ⃗=0"," @n"·" (AC) ⃗=0"," )┤∴{■(4z=0"," @2x+2√2 y=0"," )┤

  令x=1,则y=-√2/2, =0,

  ∴n=(1",-" √2/2 "," 0).

  设直线QC与平面PAC所成的角为θ,

  则sin θ=|cos<(CQ) ⃗,n>|=("|" (CQ) ⃗"·" n"|" )/("|" (CQ) ⃗" " n"|" )=2/(2√3×√6/2)=√2/3.

  故直线QC与平面PAC所成角的正弦值为√2/3.

拓展提升(水平二)

8.如图,在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为(  ).

A.1/5 B.2/5