拓展提升(水平二)
8.已知直线y=kx是曲线y=ln x的切线,则k的值为( ).
A.-e B.e C.-1/e D.1/e
【解析】∵y'=1/x=k,∴x=1/k,∴切点坐标为(1/k "," 1).又切点在曲线y=ln x上,∴ln1/k=1,∴1/k=e,k=1/e.
【答案】D
9.设f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),...,fn+1(x)=fn'(x),n∈N,则f2020(x)等于( ).
A.sin x B.-sin x C.cos x D.-cos x
【解析】∵f0(x)=sin x,
∴f1(x)=f0'(x)=(sin x)'=cos x,
f2(x)=f1'(x)=(cos x)'=-sin x,
f3(x)=f2'(x)=(-sin x)'=-cos x,
f4(x)=f3'(x)=(-cos x)'=sin x,
......
∴4为fn(x)的最小正周期,
∴f2020(x)=f4×505(x)=f0(x)=sin x.故选A.
【答案】A
10.若函数f(x)=ex+2ax存在与直线y=5x+6平行的切线,则实数a的取值范围是 .
【解析】∵f'(x)=ex+2a,由题意ex+2a=5有解,∴ex=5-2a,∴5-2a>0,∴a<5/2.
【答案】("-∞," 5/2)
11.设函数f(x)=ax-b/x,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形的面积为定值,并求此定值.
【解析】(1)由7x-4y-12=0,得y=7/4x-3.
当x=2时,y=1/2,所以f(2)=1/2. ①
又f'(x)=a+b/x^2 ,所以f'(2)=7/4. ②
由①②得{■(2a"-" b/2=1/2 "," @a+b/4=7/4 "." )┤
解得{■(a=1"," @b=3"." )┤故f(x)=x-3/x.
(2)设P(x0,y0)为曲线上任一点,由f'(x)=1+3/x^2 ,
知曲线在点P(x0,y0)处的切线方程为y-y0=(1+3/(x_0^2 ))(x-x0),
即y-(x_0 "-" 3/x_0 )=(1+3/(x_0^2 ))(x-x0).
令x=0,得y=-6/x_0 ,即得切线与直线x=0的交点坐标为(0",-" 6/x_0 ).
令y=x,得y=x=2x0,即得切线与直线y=x的交点坐标为(2x0,2x0).
所以曲线y=f(x)在点P(x0,y0)处的切线与直线x=0和直线y=x所围成的三角形面积为1/2·|"-" 6/x_0 |·|2x0|=6.