【302edu解析】福建省厦门市华侨中学2018-2019学年高一上学期期中考试数学试题 Word版含解析
【302edu解析】福建省厦门市华侨中学2018-2019学年高一上学期期中考试数学试题 Word版含解析第4页

由指数与对数函数的性质可得a,b,c,d的范围,进而可得结果.

【详解】1

故选A.

【点睛】本题考查了对数函数单调性及指数运算的应用,属于基础题.

10.函数的图像关于( )

A. 轴对称 B. 轴对称 C. 直线对称 D. 坐标原点对称

【答案】D

【解析】

【分析】

函数定义域关于原点对称,由可求,通过计算可得,即可得出结论.

【详解】函数定义域关于原点对称,,所以为奇函数.

故选D.

【点睛】本题考查了函数对称性,准确应用定义是关键,属于基础题型.

11.设函数,则满足的的取值范围是( )

A. B. C. D.

【答案】D

【解析】

【分析】

根据分段函数的表达式,解不等式即可,注意要对x进行分类讨论.

【详解】由分段函数可知,若x≤1,由f(x)≤2得,21-x≤2,即1-x≤1,∴x≥0,此时0≤x≤1,若x>1,由f(x)≤2得1-log2x≤2,即log2x≥-1,即x≥此时x>1,综上:x≥0,

故选D.

【点睛】本题主要考查分段函数的应用,利用分段函数的表达式讨论x的取值范围,解不等式即可.

12.若函数 是R上的减函数,则实数a的取值范围是( )