2019-2020学年人教B版选修2-2 15 实数系 复数的概念 作业(1)
2019-2020学年人教B版选修2-2 15 实数系 复数的概念 作业(1)第3页

答案:-2

7m分别为何实数时,复数

z=(m^2 "-" m"-" 6)/(m+3)+(m2-2m-15)i.

(1)为实数;

(2)为虚数;

(3)为纯虚数.

分析:根据复数的有关概念,将复数问题转化为实数问题求解.

解复数z的实部为 (m^2 "-" m"-" 6)/(m+3)=("(" m+2")(" m"-" 3")" )/(m+3).

  虚部为m2-2m-15=(m+3)(m-5).

  (1)要使z是实数,则必须有{■("(" m+3")(" m"-" 5")" =0"," @m+3≠0"," )┤

  解得m=5,所以当m=5时,z为实数.

  (2)要使z为虚数,则必须有{■("(" m+3")(" m"-" 5")" ≠0"," @m+3≠0"," )┤

  所以当m≠5,且m≠-3时,z为虚数.

  (3)要使z为纯虚数,

  则必须有{■(("(" m+2")(" m"-" 3")" )/(m+3)=0"," @"(" m+3")(" m"-" 5")" ≠0"," )┤

  解得m=-2或m=3,

  所以当m=-2或m=3时,z为纯虚数.

8关于x的方程3x2-a/2 x-1=(10-x-2x2)i有实数根,求实数a的值和这个实根.

分析:由方程有实根,根据复数相等的充要条件,将问题转化为方程组来求解.