2019-2020学年北师大版选修2-2课时分层作业10 导数的加法与减法法则 导数的乘法与除法法则 作业(1)
2019-2020学年北师大版选修2-2课时分层作业10 导数的加法与减法法则 导数的乘法与除法法则 作业(1)第2页

6.若f(x)=x2-2x-4ln x,则f'(x)>0的解集为    .

解析:由f(x)=x2-2x-4ln x,得函数的定义域为(0,+∞),且f'(x)=2x-2-4/x=(2x^2 "-" 2x"-" 4)/x=(2"(" x+1")(" x"-" 2")" )/x,由f'(x)>0,解得x>2.故f'(x)>0的解集为(2,+∞).

答案:(2,+∞)

7.设f(x)=ex+xe+ea,则f'(x)=      .

解析:f'(x)=(ex)'+(xe)'+(ea)'=ex+exe-1.

答案:ex+exe-1

8.若曲线C:y=x3-2ax2+2ax上任意一点处的切线的倾斜角都是锐角,则实数a的取值范围是       .

解析:∵曲线在任意一点处的切线的倾斜角都是锐角,

  ∴y'=3x2-4ax+2a>0恒成立.

  ∴Δ=16a2-24a<0.∴0

答案:0

9.求下列函数的导数:

(1)y=x·cos x+√x;

(2)y=sin4x/4+cos4x/4;

(3)y=lgx/x^n .

解(1)y'=(x·cos x)'+(√x)'

  =cos x-x·sin x+1/2 x^("-" 1/2).

  (2)∵y=sin4x/4+cos4x/4

  =(sin^2 x/4+cos^2 x/4)^2-2sin2x/4·cos2x/4

  =1-1/2sin2x/2=1-1/2·(1"-" cosx)/2

  =3/4+1/4cos x,

  ∴y'=(3/4+1/4 cosx)'=-1/4sin x.

  (3)y'=("(" lgx")'" x^n "-" lgx"·(" x^n ")'" )/("(" x^n ")" ^2 )

  =(x^n/xln10 "-" lgx"·" n"·" x^(n"-" 1))/x^2n =(x^(n"-" 1) (1/ln10 "-" n"·" lgx))/x^2n

  =(1"-" n"·" lgx"·" ln10)/(x^(n+1) "·" ln10).

10.导学号88184024设函数f(x)=ax+1/(x+b)(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.

(1)求f(x)的解析:式;

(2)求证:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围成的三角形的面积为定值,并求出此定值.

(1)解f'(x)=a-1/("(" x+b")" ^2 ),于是{■(2a+1/(2+b)=3"," @a"-" 1/("(" 2+b")" ^2 )=0"," )┤