《302edu发布》江苏省南京市六校联合体2018-2019学年高二下学期期末联考试题 数学 扫描版含答案
《302edu发布》江苏省南京市六校联合体2018-2019学年高二下学期期末联考试题 数学 扫描版含答案第3页

18.(本小题满分16分)

  解:(1)由题意,得=,+=1,解得a2=6,b2=3. ·······················2分

所以椭圆的方程为+=1. ··········································3分

(2)椭圆C的右焦点F(,0).

设切线方程为y=k(x-),即kx-y-k=0,

所以=,解得k=±,所以切线方程为y=±(x-). ·················5分

  把切线方程 y=(x-)代入椭圆C的方程,消去y得5x2-8x+6=0.

  设P(x1,y1) ,Q(x2,y2),则有x1+x2=.

  由椭圆定义可得,PQ=PF+FQ=2a-e( x1+x2)=2×-×=.········7分

  所以,△OPQ的面积为. ·······················8分

  ②解法一:(i)若直线PQ的斜率不存在,则直线PQ的方程为x=或x=-.

  当x=时,P (,),Q(,-).

  因为\s\up7(→(→)·\s\up7(→(→)=0,所以OP⊥OQ.··········9分

  当x=-时,同理可得OP⊥OQ。

  由等面积法可知 = ·································10分

  (ii) 若直线PQ的斜率存在,设直线PQ的方程为y=kx+m,即kx-y+m=0.

  因为直线与圆相切,所以=,即m2=2k2+2. ··················12分

  将直线PQ方程代入椭圆方程,得(1+2k2) x2+4kmx+2m2-6=0.

  设P(x1,y1) ,Q(x2,y2),则有x1+x2=-,x1x2=.··········13分

  因为\s\up7(→(→)·\s\up7(→(→)=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2

        =(1+k2)×+km×(-)+m2.

将m2=2k2+2代入上式可得\s\up7(→(→)·\s\up7(→(→)=0, ··················15分