答案:或
5.(2018·北京东城模拟)已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2∶,则椭圆C的方程是____________________.
解析:设椭圆C的方程为+=1(a>b>0).
由题意知解得a2=16,b2=12.
所以椭圆C的方程为+=1.
答案:+=1
二保高考,全练题型做到高考达标
1.曲线+=1与曲线+=1(k<9)的( )
A.长轴长相等 B.短轴长相等
C.离心率相等 D.焦距相等
解析:选D c2=25-k-(9-k)=16,所以c=4,所以两个曲线的焦距相等.
2.若椭圆C的长轴长是短轴长的3倍,则C的离心率为( )
A. B.
C. D.
解析:选D 不妨设椭圆C的方程为+=1(a>b>0),则2a=2b×3,即a=3b.
∴a2=9b2=9(a2-c2).
即=,
∴e==,故选D.
3.过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B.