令F(x)=(x+xlnx)/(x"-" 2),
则F'(x)=((1+lnx+x"·" 1/x)"(" x"-" 2")-(" x+xlnx")" )/("(" x"-" 2")" ^2 )=(x"-" 2lnx"-" 4)/("(" x"-" 2")" ^2 ).
令g(x)=x-2ln x-4,则g'(x)=1-2/x>0.
∴g(x)在(2,+∞)上是增函数,
且g(8)=8-2ln 8-4=2(2-ln 8)<0,g(9)=9-2ln 9-4=5-2ln 9>0.
∴存在x0∈(8,9),使g(x0)=0,即2ln x0=x0-4.
∴F(x)=(x+xlnx)/(x"-" 2)在区间(2,x0)上是减函数,在区间(x0,+∞)上是增函数.
∴F(x)min=F(x0)=(x_0+x_0 "·" (x_0 "-" 4)/2)/(x_0 "-" 2)=x_0/2,
∴k