4.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为( )
A.x=1 B.x=-1
C.x=2 D.x=-2
解析:(方法一)设A(x1,y1),B(x2,y2),由题意知直线AB的方程为y=x-p/2 与y2=2px联立得y2-2py-p2=0,
∴y1+y2=2p,由题意知y1+y2=4,∴p=2.
∴抛物线的方程为y2=4x,其准线为x=-1,
故选B.
(方法二)设A(x1,y1),B(x2,y2),
由题意得y1+y2=4,y_1^2=2px1,y_2^2=2px2,
两式相减得:kAB=(y_1 "-" y_2)/(x_1 "-" x_2 )=2p/(y_1+y_2 )=p/2=1,
∴p=2.
∴抛物线的方程为y2=4x,其准线为x=-1,故选B.
答案:B
5.抛物线y=ax2(a>0)与直线y=kx+b两个交点的横坐标分别为x1,x2,而x3是直线与x轴交点的横坐标,则0( )
A.x3=x1+x2 B.x3=1/x_1 +1/x_2
C.x1x2=x1x3+x2x3 D.x1x3=x2x3+x1x2
答案:C
6.已知直线y=k(x-m)与抛物线y2=2px(p>0)交于A,B两点,且OA⊥OB,OD⊥AB于点D.若动点D的坐标满足方程x2+y2-4x=0,则m=( )
A.1 B.2 C.3 D.4
解析:设点D(a,b),则由OD⊥AB于D,
得{■(b/a="-" 1/k "," @b=k"(" a"-" m")," )┤则b=-km/(1+k^2 ),a=-bk.
又动点D的坐标满足方程x2+y2-4x=0,
即a2+b2-4a=0.
将a=-bk代入上式,得b2k2+b2+4bk=0,
即bk2+b+4k=0,-(k^3 m)/(1+k^2 )-km/(1+k^2 )+4k=0.
又由k≠0,知(1+k2)(4-m)=0,故m=4.
答案:D
7.已知点P是抛物线y2=4x上一点,设P到此抛物线准线的距离为d1,到直线x+2y-12=0的距离为d2, 则d1+d2的最小值为 .
解析:∵d1=|PF|,∴d1+d2的最小值就是焦点F到直线x+2y-12=0的距离,
∴(d1+d2)min=("|" 1"-" 12"|" )/√(1+4)=11/√5=(11√5)/5.