故选
【点睛】本题考查了对称点的坐标的求法,解决此类问题的关键是熟练掌握空间直角坐标系,以及坐标系中点之间的位置关系,属于基础题。
3.已知,则""是"直线与直线垂直"的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】
【分析】
当时,判断两直线是否垂直,由此判断充分性,当两直线垂直时,根据两直线垂直的性质求出的值,由此判断必要性,从而得到答案
【详解】充分性:
当时,两条直线分别为:与
此时两条直线垂直
必要性:
若两条直线垂直,则,解得
故""是"直线与直线垂直"的充分不必要条件
故选
【点睛】本题是一道有关充分条件和必要条件的题目,需要分别从充分性和必要性两方面分析,属于基础题。
4.设矩形边长分别为,将其按两种方式卷成高为和的圆柱(无底面),其体积分别为和,则与的大小关系是( )
A. B. C. D. 不确定
【答案】C
【解析】
【分析】
根据题意,分别求得卷得圆柱的底面圆的半径,利用圆柱的体积公式,求解两圆柱的体积,比较即可得到答案.
【详解】由题意,当卷成高为的圆柱时,此时设圆柱的底面半径为,则,