由⇒
∴∴a+b=5+13=18.]
4.D [由已知f′(x)=sin θ·x2+cos θ·x,
∴f′(1)=sin θ+cos θ=2sin,
又θ∈.∴≤θ+≤,
∴≤sin≤1,∴≤f′(1)≤2.]
5.A [∵y′=(ex)′=ex,∴k=y′|x=2=e2.
∴曲线在点(2,e2)处的切线方程为
y-e2=e2(x-2),
即y=e2x-e2.
当x=0时,y=-e2,
当y=0时,x=1.
∴S△=×1×|-e2|=e2.]
6.A [y′=3x2-2,∴k=y′|x=1=3-2=1,
∴切线方程为y=x-1.]
7.y=2x+3
解析 由f(x)=sin x+ex+2
得f′(x)=cos x+ex,
从而f′(0)=2,又f(0)=3,
所以切线方程为y=2x+3.
8.
解析 ∵s′=2t-,
∴v=s′|t=4=8-=(m/s).
9.-
解析 ∵f′(x)=f′(2)·2x+5,
∴f′(2)=f′(2)×2×2+5,
∴3f′(2)=-5,∴f′(2)=-.
10.解 (1)y′=
=