2018-2019学年人教A版选修2-1 2.2 椭圆 课时作业
2018-2019学年人教A版选修2-1     2.2 椭圆    课时作业第3页

7已知F1,F2是椭圆C:x^2/a^2 +y^2/b^2 =1(a>b>0)的两个焦点,P为椭圆C上一点,且(PF_1 ) ⃗⊥(PF_2 ) ⃗.若△PF1F2的面积为9,则b=     .

解析:依题意,有{■("|" PF_1 "|" +"|" PF_2 "|" =2a"," @"|" PF_1 "|·|" PF_2 "|" =18"," @"|" PF_1 "|" ^2+"|" PF_2 "|" ^2=4c^2 "," )┤

  解得4c2+36=4a2,

  即a2-c2=9,故b=3.

答案:3

8已知椭圆的两焦点坐标分别是(-2,0),(2,0),并且经过点(5/2 ",-" 3/2),求它的标准方程.

解:∵椭圆的焦点在x轴上,

  ∴可设标准方程为x^2/a^2 +y^2/b^2 =1(a>b>0).

  ∵2a=√((5/2+2)^2+("-" 3/2)^2 )+√((5/2 "-" 2)^2+("-" 3/2)^2 )

  =2√10,

  ∴a=√10,a2=10.

  ∵c=2,∴c2=4,∴b2=a2-c2=6.

  故椭圆方程为x^2/10+y^2/6=1.

9已知椭圆x^2/4+y2=1的左、右焦点分别为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,求|PF2|的长.

解:由椭圆的方程可知F1的坐标为(-√3,0).

设P(-√3,y),把P(-√3,y)代入椭圆的方程中,