【分析】
利用超几何分布分别求随机变量X的概率,分布列及其数学期望即可得出.
【详解】随机变量X的所有可能取值为1,2,3,4.P(X=k)=(k=1,2,3,4).
所以,随机变量X的分布列为
X 1 2 3 4 P
随机变量X的数学期望E(X)=.
【点睛】本题考查了超几何分布的概率计算公式、分布列及其数学期望,考查了推理能力与计算能力,属于中档题.
6.袋中有个外形相同的球,其中个白球,个黑球,个红球,从中任意取出一球,已知它不是白球,求它是黑球的概率( )
A. B. C. D.
【答案】C
【解析】
【分析】
本题是一个等可能事件的概率,试验发生包含的事件是从盒子中取出一个不是白球的小球,共有5种结果,满足条件的事件是取出的球是一个黑球,共有3种结果,得到概率.
【详解】由题意知本题是一个等可能事件的概率,
试验发生包含的事件是从盒子中取出一个不是白球的小球,共有5种结果,
满足条件的事件是取出的球是一个黑球,共有3种结果,
∴根据等可能事件的概率得到P=.
故选C.
【点睛】本题考查等可能事件的概率,对于一个事件是否是等可能事件,要看对概率的理解,若出现的基本事件是等可能的就可以按照等可能事件来理解和解题.
7.【2015高考山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布,