如图,在直三棱柱ABCA1B1C1中,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是( )
A.45° B.60°
C.90° D.120°
解析:选B.令\s\up6(→(→)=a,\s\up6(→(→)=b,\s\up6(→(→)=c,则|a|=|b|=|c|=m(m>0),a·b=b·c=c·a=0,\s\up6(→(→)=(c-a),\s\up6(→(→)=b+c,又|\s\up6(→(→)|=m,|\s\up6(→(→)|=m,∴cos〈\s\up6(→(→),\s\up6(→(→)〉=\s\up6(→(EF,\s\up6(→)==,∴直线EF和BC1所成的角为60°.
化简(\s\up6(→(→)-\s\up6(→(→))-(\s\up6(→(→)-\s\up6(→(→))= .
解析:法一:(利用相反向量的关系转化为加法运算)(\s\up6(→(→)-\s\up6(→(→))-(\s\up6(→(→)-\s\up6(→(→))=\s\up6(→(→)-\s\up6(→(→)-\s\up6(→(→)+\s\up6(→(→)
=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)+\s\up6(→(→)=0.
法二:(利用向量的减法运算法则求解)
(\s\up6(→(→)-\s\up6(→(→))-(\s\up6(→(→)-\s\up6(→(→))=(\s\up6(→(→)-\s\up6(→(→))+\s\up6(→(→)-\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)-\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=0.
答案:0
设e1,e2是空间两个不共线的向量,若\s\up6(→(→)=e1+ke2,\s\up6(→(→)=5e1+4e2,\s\up6(→(→)=-e1-2e2,且A,B,D三点共线,则实数k= .
解析:\s\up6(→(→)=\s\up6(→(→)+\s\up6(→(→)=\s\up6(→(→)-\s\up6(→(→)=6(e1+e2),∵A、B、D三点共线,可令\s\up6(→(→)=λ\s\up6(→(→),即e1+ke2=6λ(e1+e2),又e1,e2不共线,故有,∴k=1.
答案:1
如图,已知四棱柱ABCDA1B1C1D1的底面ABCD是矩形,AB=4,AA1=3,∠BAA1=60°,E为棱C1D1的中点,则\s\up6(→(→)·\s\up6(→(→)= .