当且仅当时等号成立.
6. 答案:C≤B≤A
解析:∵ (a,b∈R+),,且f(x)=2x是增函数,
∴,即C≤B≤A.
7证明:ab+a+b+1=(a+1)(b+1),ab+ac+bc+c2=(a+c)(b+c).
∵a>0,b>0,c>0,故,,,,
∴
因此当a,b,c∈R+时,有(ab+a+b+1)(ab+ac+bc+c2)=(a+1)(b+1)(a+c)(b+c)≥16abc.
8. 证明:设F1(-c,0),F2(c,0)(c2=a2-b2),
则|OF2|=c.设A(x0,y0),∵AF2⊥F1F2,
∴x0=c,代入可解得.
∴|AF1|=2a-|AF2|=.
在Rt△AF2F1中,O是F1F2的中点,
∴O到AF1的距离为.
∴,化简整理得a2=2b2.∴.
9. 证明:(1)由于x≥1,y≥1,所以⇔xy(x+y)+1≤y+x+(xy)2.
将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]
=[(xy)2-1]-[xy(x+y)-(x+y)]
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1).
既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0.