2018-2019学年北师大版必修四 单位圆与正弦函数余弦函数的基本性质 课时作业
2018-2019学年北师大版必修四     单位圆与正弦函数余弦函数的基本性质  课时作业第3页

解析根据三角函数的定义得cos β=-sin α,sin β=cos α,由诱导公式得,cos β=-sin α=cos(2kπ+π/2+α),k∈Z,sin β=cos α=sin(2kπ+π/2±α),k∈Z,因此,β=α+π/2+2kπ,k∈Z.

答案α+π/2+2kπ,k∈Z

5.化简求值:√(1+2sin290"°" cos430"°" )/(sin250"°" +cos790"°" )=     .

解析√(1+2sin290"°" cos430"°" )/(sin250"°" +cos790"°" )

  =√(1+2sin"(-" 70"°" +360"°)" cos"(" 70"°" +360"°)" )/(sin"(" 180"°" +70"°)" +cos"(" 70"°" +2×360"°)" )

  =√(1"-" 2sin70"°" cos70"°" )/(cos70"°-" sin70"°" )=√("(" sin70"°-" cos70"°" ")" ^2 )/(cos70"°-" sin70"°" )

  =(sin70"°-" cos70"°" )/(cos70"°-" sin70"°" )=-1.

答案-1

6.导学号93774013已知函数f(x)=cosx/2,则下列四个等式中,成立的是     .(写出正确的序号)

①f(2π-x)=f(x);②f(2π+x)=f(x);③f(-x)=-f(x);④f(-x)=f(x).

解析f(2π-x)=cos(2π"-" x)/2=cos(π"-" x/2)=-cosx/2=-f(x),①不成立;

  f(2π+x)=cos(2π+x)/2=cos(π+x/2)=-cosx/2=-f(x),②不成立;f(-x)=cos("-" x/2)=cosx/2=f(x),③不成立,④成立.

答案④

7.求函数f(x)=2sin2x+14sin x-1的最大值与最小值.

解因为f(x)=2sin2x+14sin x-1=2(sinx+7/2)^2-51/2,又-1≤sin x≤1,

  所以当sin x=1时,f(x)取最大值15;

  当sin x=-1时,f(x)取最小值-13.

8.导学号93774014设f(θ)=(2cos^3 θ+sin^2 (θ+π/2)"-" 2cos"(-" θ"-" π")" )/(2+2cos^2 "(" 7π+θ")" +cos"(-" θ")" ),

求f((2" " 023π)/3)的值.

解因为f(θ)=(2cos^3 θ+sin^2 (θ+π/2)"-" 2cos"(-" θ"-" π")" )/(2+2cos^2 "(" 7π+θ")" +cos"(-" θ")" )

  =(2cos^3 θ+cos^2 θ+2cosθ)/(2+2cos^2 θ+cosθ)

  =(cosθ"(" 2cos^2 θ+cosθ+2")" )/(2+2cos^2 θ+cosθ)

  =cos θ,

  所以f((2" " 023π)/3)=cos(2" " 023π)/3

  =cos(337×2π+π/3)=cosπ/3=1/2.