两个交点坐标分别为(0,-1),,∴\s\up7(―→(―→)·\s\up7(―→(―→)=-,同理,直线 l经过椭圆的左焦点时,也可得\s\up7(―→(―→)·\s\up7(―→(―→)=-.
4.已知抛物线y2=2px的焦点F与椭圆16x2+25y2=400的左焦点重合,抛物线的准线与x轴的交点为K,点A在抛物线上且|AK|=|AF|,则点A的横坐标为( )
A.2 B.-2
C.3 D.-3
解析:选D 16x2+25y2=400可化为+=1,
则椭圆的左焦点为F(-3,0),
又抛物线y2=2px的焦点为,准线为x=-,
所以=-3,即p=-6,即y2=-12x,K(3,0).
设A(x,y),则由|AK|=|AF|得
(x-3)2+y2=2,即x2+18x+9+y2=0,
又y2=-12x,所以x2+6x+9=0,解得x=-3.
5.已知双曲线-=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-,则m的值为( )
A. B.
C.2 D.3
解析:选A 由双曲线的定义知2a=4,得a=2,
所以抛物线的方程为y=2x2.
因为点A(x1,y1),B(x2,y2)在抛物线y=2x2上,
所以y1=2x,y2=2x,
两式相减得y1-y2=2(x1-x2)(x1+x2),
不妨设x1<x2,又A,B关于直线y=x+m对称,
所以=-1,
故x1+x2=-,