解析:∵a,b∈R,2+ai=b-i⇒a=-1,b=2,∴|z|=√(1+4)=√5.
答案:C
5.若复数(m2-8m+15)+(m2+3m-28)i在复平面内对应的点位于第四象限,则实数m的范围是( )
A.m>5
B.m<3
C.-7 D.-7 解析:由题意知{■(m^2 "-" 8m+15>0"," @m^2+3m"-" 28<0"," )┤解得{■(m<3"或" m>5"," @"-" 7 故-7 答案:D 6.已知复数z=m2-m+(m2-1)i(m∈R).若z是实数,则m的值为 ;若z是虚数,则m的取值范围是 ;若z是纯虚数,则m的值为 . 解析:z=m2-m+(m2-1)i;实部为m2-m,虚部为m2-1. 当m2-1=0,即m=±1时z为实数; 当m2-1≠0,即m≠±1时,z为虚数; 当m2-m=0且m2-1≠0,即m=0时,z为纯虚数. 答案:±1 m≠±1 0 7.若复数z=(m-2)+(m+3)i为纯虚数,则|z|= . 解析:本题考查复数的有关概念及复数模的计算,根据z是纯虚数,由复数z的实部为0,求出m的值后,利用模的定义求|z|. ∵z=(m-2)+(m+3)i为纯虚数, ∴{■(m"-" 2=0"," @m+3≠0"." )┤ ∴m=2,z=5i. ∴|z|=5. 答案:5 8.已知关于x的方程x2+(m+2i)x+2+2i=0(m∈R)有实根n,则复数z=m+ni= . 解析:由题意,知n2+(m+2i)n+2+2i=0,即{■(n^2+mn+2=0"," @2n+2=0"," )┤解得{■(m=3"," @n="-" 1"," )┤ ∴z=m+ni=3-i. 答案:3-i 9.实数k为何值时,复数z=(1+i)k2-(3+5i)k分别是:(1)实数?(2)虚数?(3)纯虚数? 解z=(1+i)k2-(3+5i)k=(k2-3k)+(k2-5k)i. (1)当k2-5k=0时,z∈R,此时k=5或k=0. (2)当k2-5k≠0时,z是虚数,此时k≠5且k≠0. (3)当{■(k^2 "-" 3k=0"," @k^2 "-" 5k≠0)┤时,z是纯虚数,解得k=3.