解析由已知得两直线的方向向量分别是m=(1,2),n=(1,-1),于是cos θ=(m"·" n)/("|" m"||" n"|" )=("-" 1)/(√5×√2)=-√10/10,于是两直线的夹角的余弦值是√10/10.
答案√10/10
8.在Rt△ABC中,∠C=90°,E,F是斜边AB的两个三等分点,且AC=6,BC=8,则(CE) ⃗·(CF) ⃗= .
解析
以C为原点,CB,CA分别为x轴、y轴建立坐标系,由已知可得,C(0,0),E(8/3 "," 4),F(16/3 "," 2),于是(CE) ⃗=(8/3 "," 4),(CF) ⃗=(16/3 "," 2),于是(CE) ⃗·(CF) ⃗=200/9.
答案200/9
9.已知a=(1,2),b=(-3,2).
(1)求a-b及|a-b|;
(2)求ka+b与a-b垂直,求实数k的值.
解(1)a-b=(4,0),|a-b|=√(4^2+0^2 )=4.
(2)ka+b=(k-3,2k+2),a-b=(4,0).
∵(ka+b)⊥(a-b),∴(ka+b)·(a-b)=4(k-3)+(2k+2)·0=0,解得k=3.
10.导学号93774078已知a,b,c 是同一平面内的三个向量,其中a=(1,2).
(1)若|c|=2√5,且c∥a,求c的坐标;
(2)若|b|=√5/2,且a+2b与2a-b垂直,求a与b的夹角θ.
解(1)设c=(x,y),∵|c|=2√5,
∴√(x^2+y^2 )=2√5,即x2+y2=20.
由c∥a和|c|=2√5,可得{■(1"·" y"-" 2"·" x=0"," @x^2+y^2=20"," )┤
解得{■(x=2"," @y=4)┤或{■(x="-" 2"," @y="-" 4"." )┤
故c=(2,4)或c=(-2,-4).
(2)∵(a+2b)⊥(2a-b),
∴(a+2b)·(2a-b)=0,
即2a2+3a·b-2b2=0,
∴2×5+3a·b-2×5/4=0,
整理得a·b=-5/2,
∴cos θ=(a"·" b)/("|" a"||" b"|" )=-1.
又θ∈[0,π],∴θ=π.
B组 能力提升
1.已知向量a+b=(2,-8),a-b=(-8,16),则a与b夹角的余弦值为( )
A.63/65 B.-63/65 C.±63/65 D.5/13
解析由a+b=(2,-8),a-b=(-8,16)得a=(-3,4),b=(5,-12),所以cos=(a"·" b)/("|" a"||" b"|" )=("-" 15"-" 48)/(5×13)=-63/65,故选B.
答案B
2.已知O为坐标原点,向量(OA) ⃗=(3sin α,cos α),(OB) ⃗=(2sin α,5sin α-4cos α),α∈(3π/2 "," 2π),且(OA) ⃗⊥(OB) ⃗,则tan α的值为( )