【答案】 B
5.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( )
A.18 B.24
C.36 D.48
【解析】 不妨设抛物线的标准方程为y2=2px(p>0),由于l垂直于对称轴且过焦点,故直线l的方程为x=.代入y2=2px得y=±p,即|AB|=2p,又|AB|=12,故p=6,所以抛物线的准线方程为x=-3,故S△ABP=×6×12=36.
【答案】 C
二、填空题
6.抛物线顶点在坐标原点,以y轴为对称轴,过焦点且与y轴垂直的弦长为16,则抛物线方程为________.
【解析】 过焦点且与对称轴垂直的弦是通径,即2p=16,所以抛物线的方程为x2=±16y.
【答案】 x2=±16y
7.设抛物线y2=2px(p>0)的焦点为F,点A(0,2),若线段FA的中点B在抛物线上,则点B到该抛物线准线的距离为________.
【解析】 由已知得点B的纵坐标为1,横坐标为,即B将其代入y2=2px得p=,则点B到准线的距离为+=p=.
【答案】
8.对于顶点在原点的抛物线,给出下列条件:
①焦点在y轴上;
②焦点在x轴上;
③抛物线上横坐标为1的点到焦点的距离等于6;
④抛物线的通径的长为5;
⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).
则使抛物线方程为y2=10x的必要条件是________(要求填写合适条件的序号).
【解析】 由抛物线方程y2=10x,知它的焦点在x轴上,所以②适合.
又∵它的焦点坐标为F,原点O(0,0),设点P(2,1),可得kPO·kPF=-1,∴⑤也合适.