2018-2019学年北师大版选修2-3 组合与组合数公式 课时作业
2018-2019学年北师大版选修2-3      组合与组合数公式    课时作业第3页

  辅导员,每班至少一名辅导员,且A班必须有两名辅导员,则不同的分配方法有多少种?

  [解] 第一步,把5名大学毕业生分成人数为2,1,1,1的四份,有=C种分法;

  第二步,把分好的四份分配给A,B,C,D 4个班级,有A种分法.

  根据分步乘法计数原理,可得总共的分配方法种数为CA=60种.

  题组三 排列、组合的综合应用

  7.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为(  )

  A.300 B.216 C.180 D.162

  [解析] 分两类情况:一类不含0,有CA=72个数,一类含0,有CCCA=108个数.共有72+108=180个数.故选C.

  [答案] C

  8.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有(  )

  A.10种 B.15种 C.20种 D.30种

[解析] 分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C=6种情况;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C=12