解析:以小区间左端点时的速度作为小区间的速度,可得不足估计值为(5×2+5×3+5×4+5×5+5×6+5×7)×1=135(km).
答案:135
6.已知由直线x=0,x=2,y=0与曲线y=x2+1所围成的曲边梯形,求该曲边梯形面积的过剩估计值、不足估计值及估计值的误差.(将区间[0,2]5等分) | Z|X|X|K]
解将区间[0,2]5等分,区间分别为[0"," 2/5],[2/5 "," 4/5],[4/5 "," 6/5],[6/5 "," 8/5],[8/5 "," 2],以小区间右端点对应的函数值为高,得曲边梯形面积的过剩估计值为S1=[(2/5)^2+1+(4/5)^2+1+(6/5)^2+1+(8/5)^2+1+2^2+1]×2/5=5.52.
相应地,可得不足估计值为s1=[1+(2/5)^2 ┤+1+(4/5)^2+1+(6/5)^2+1+├ (8/5)^2+1]×2/5=3.92,
估计值的误差为S1-s1=5.52-3.92=1.6.
7.已知变力F与位移s的关系为F(s)=4s+3,估计力F在[2,5]这段位移内所做的功.(将区间[2,5]6等分)
解将区间[2,5]6等分,区间分别为[2"," 5/2],[5/2 "," 3],[3"," 7/2],[7/2 "," 4],[4"," 9/2],[9/2 "," 5].
则力F所做功的过剩估计值为
W1=1/2 [4×(5/2+3+7/2+4+9/2+5)+18]=54,
不足估计值为
w1=1/2 [4×(2+5/2+3+7/2+4+9/2)+18]=48, ]
误差为54-48=6.
所以无论用W1还是用w1来估计力F在这段位移内所做的功,误差都不会超过6.
★8.已知汽车在某一段时间内的速度函数为v(t)=16-2t,0≤t≤5,试估计该汽车在这段时间内走过的路程.(将区间[0,5]10等分) 学 ]
解将区间[0,5]10等分,则汽车行驶路程的不足估计值为S1=0.5[160"-" 2(1/2+1+3/2┤┤+2+5/2+3+7/2+4+├ ├ 9/2+5)]=80-55/2=105/2,
过剩估计值为s1=0.5[160"-" 2(0+1/2┤┤+1+3/2+2+5/2+3+7/2+4+├ ├ 9/2)]=80-45/2=115/2,
估计值的误差为115/2-105/2=5.
所以无论用S1还是用s1来估计汽车在这段时间内走过的路程,误差都不会超过5.