(1)函数的最大值,最小值及最小正周期;
(2)函数的单调递增区间.
19. 设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.
(1)求B;
(2)若sinAsin C=,求C.
20. 某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目;
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,
①列出所有可能的抽取结果;
②求抽取的2所学校均为小学的概率.
21. 已知函数f(x)=x-1+(a∈R,e为自然对数的底数).
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)求函数f(x)的极值;
(3)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.
22. 在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.