【分析】
根据正弦定理可得到三边的比例关系,再由余弦定理得到角B的余弦值,进而得到正弦值.
【详解】∵sin A∶sin B∶sin C=6∶5∶4,∴a∶b∶c=6∶5∶4,
不妨取a=6,b=5,c=4,则cos B==,B∈(0,π).
则sin B==.
故答案为:.
【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答
9.将等差数列1,4,7......,按一定的规则排成了如图所示的三角形数阵.根据这个排列规则,数阵中第20行从左至右的第3个数是_______
【答案】577
【解析】
【分析】
由等差数列的特征得到等差数列的通项公式,再根据三角形数阵的特点找出第20行3列的数代入公式计算即可.
【详解】由题意可得等差数列的通项公式为,由三角形数阵的特点可知第20行3列的数为:,过数阵中第20行3列的数是数列的第193项,中.
【点睛】本题考查学生的观察能力以及数列的简单知识.本题解题的关键是找到三角形数阵中数排列的规律.
10.若x,y均为正数,且9x+y=xy,则x+y的最小值是________.
【答案】16
【解析】