人教版八年级上册数学《全册教学设计教案》免费下载15
人教版八年级上册数学《全册教学设计教案》免费下载15第2页

 [生丁]我是运用三角形全等来证明的.

[例1]已知:在△ABC中,∠B=∠C(如图).

求证:AB=AC.

证明:作∠BAC的平分线AD.

在△BAD和△CAD中

∴△BAD≌△CAD(AAS).

∴AB=AC.

[师]太好了.从丁同学的证明结论来看,在一个三角形中,如果有两个角相等,那么它们所对的边也是相等,也就说这个三角形就是等腰三角形.这个结论也回答了我们一开始提出的问题.也就是如何来判定一个三角形是等腰三角形.

等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成"等角对等边").

  [师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.

[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.

[师]这个题是文字叙述的证明题,我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).

求证:AB=AC.

[师]同学们先思考,再分析.

[生]要证明AB=AC,可先证明∠B=∠C.

[师]这位同学首先想到我们这节课的重点内容,很好!

[生]接下来,可以找∠B、∠C与∠1、∠2的关系.

[师]我们共同证明,注意每一步证明的理论根据.

证明:∵AD∥BC,

∴∠1=∠B(两直线平行,同位角相等),

∠2=∠C(两直线平行,内错角相等).

又∵∠1=∠2,

∴∠B=∠C,

∴AB=AC(等角对等边).

[师]看小黑板,同学们试着完成这个题.

已知:如图,AD∥BC,BD平分∠ABC.

求证:AB=AD.

证明:∵AD∥BC,

∴∠ADB=∠DBC(两直线平行,内错角相等).

又∵BD平分∠ABC,

∴∠ABD=∠DBC,

∴∠ABD=∠ADB,

∴AB=AD(等角对等边).

[师]下面来看另一个例题.

[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?