7.求证:2cos(α-β)-=.
证明:要证原等式成立,只需证:
2cos(α-β)sin α-sin(2α-β)=sin β,
左边=2cos(α-β)sin α-sin[(α-β)+α]
=2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)·sin α
=cos(α-β)sin α-sin(α-β)cos α
=sin β=右边.
所以原等式成立.
8.设f(x)=ln x+-1,证明:
(1)当x>1时,f(x)<(x-1);
(2)当1<x<3时,f(x)<.
证明:(1)记g(x)=ln x+-1-(x-1),
则当x>1时,
g′(x)=+-<0.
又g(1)=0,
故g(x)<0,
即f(x)<(x-1).
(2)记h(x)=f(x)-,
则h′(x)=+-
=-<-
=.