即.∵-1≤≤1,
∴-1≤≤1.解不等式,可得-1≤m≤.
答案:
8.答案:
9.解:∵α+β+=+β-,
∴sin(α+β)=
=
=.
又∵,0<β<,
∴,.
∴,.
∴sin(α+β)=.
10.解:(1)f(x)=sin x++cos x+sin x =sin x-cos x=,
所以T=2π,f(x)max=2.
(2)证明:由已知得cos(β-α)=cos αcos β+sin αsin β=,①
cos(β+α)=cos αcos β-sin αsin β=,②
①+②得cos αcos β=0.
因为0<α<β≤,所以cos β=0,可得β=,
则f(β)=,所以[f(β)]2-2=0,即得证.