2017-2018学年苏教版选修2-1 1.1.1四种命题 教案
2017-2018学年苏教版选修2-1 1.1.1四种命题 教案第1页

  1.1.1四种命题

  教学目标

  1.知识与技能

  了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.

  2.过程与方法

  通过学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.

  3.情感、态度与价值观

  通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及分析问题和解决问题的能力.

  教学重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.

  教学难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.

  教学时,应从回顾命题的相关知识入手,以命题的结构为切入点,结合具体的实例,总结出四种命题的定义,并将理论应用于实践,通过适当的例题及练习,掌握四种命题的写法及真假的判断方法,并且体会四种命题间的关系,从而突出教学的重点;对于命题的否定与否命题,要结合具体的实例,进行区别,分析它们结构的区别,辨析其真假,从而化解难点.

问题导思

  观察下列四个命题:

  (1)若f(x)是正弦函数,则f(x)是周期函数;

  (2)若f(x)是周期函数,则f(x)是正弦函数;

  (3)若f(x)不是正弦函数,则f(x)不是周期函数;

  (4)若f(x)不是周期函数,则f(x)不是正弦函数.

  问题1.命题(1)与命题(2)、(3)、(4)的条件和结论之间分别有什么关系?

  【答案】 命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件;对于命题(1)、(3),其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定;对于命题(1)、(4),其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定.

  问题2.命题(1)(4)的真假性相同吗?命题(2)(3)的真假性相同吗?

  【答案】 命题(1)(4)同为真,命题(2)(3)同为假.

1.四种命题的概念

一般地,设"若p则q"为原命题,那么"若q则p"就叫做原命题的逆命题,原命题与逆命题称为互逆命题;"若非p则非q"就叫做原命题的否命题,原命题和否命题称为互否命题