1.3.2 函数的极值与导数
[学习目标]
1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.
2.掌握函数极值的判定及求法.
3.掌握函数在某一点取得极值的条件.
[知识链接]
在必修1中,我们研究了函数在定义域内的最大值与最小值问题.但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题,如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?
答 以d、e两点为例,函数y=f(x)在点x=d处的函数值f(d)比它在点x=d附近其他点的函数值都小,f′(d)=0;在x=d的附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=e处的函数值f(e)比它在x=e附近其他点的函数值都大,f′(e)=0;在x=e附近的左侧f′(x)>0,右侧f′(x)<0.
[预习导引]
1.极值点与极值的概念