3.2.2复数代数形式的乘除法运算
教学目标:
知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算
过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题
情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。
教学重点:复数代数形式的除法运算。
教学难点:对复数除法法则的运用。
教具准备:多媒体、实物投影仪。
教学设想:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d,只有当两个复数不全是实数时才不能比较大小
教学过程:
学生探究过程:
1.虚数单位:(1)它的平方等于-1,即 ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
2. 与-1的关系: 就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-
3. 的周期性:4n+1=i, 4n+2=-1, 4n+3=-i, 4n=1
4.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部全体复数所成的集合叫做复数集,用字母C表示
3. 复数的代数形式: 复数通常用字母 表示,即,把复数表示成a+bi的形式,叫做复数的代数形式
4. 复数与实数、虚数、纯虚数及0的关系:对于复数,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数 =a+bi叫做虚数;当a=0且b≠0时, =bi叫做纯虚数;当且仅当a=b=0时, 就是实数0.
5.复数集与其它数集之间的关系:N QRC.
6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复