2.3 数学归纳法课时作业 新人教版选修2-2
明目标、知重点
1.了解数学归纳法的原理.
2.能用数学归纳法证明一些简单的数学命题.
1.数学归纳法
证明一个与正整数n有关的命题,可按下列步骤进行:
①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;
②(归纳递推)假设当n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.
2.应用数学归纳法时特别注意:
(1)用数学归纳法证明的对象是与正整数n有关的命题.
(2)在用数学归纳法证明中,两个基本步骤缺一不可.
(3)步骤②的证明必须以"假设当n=k(k≥n0,k∈N*)时命题成立"为条件.
情境导学]
多米诺骨牌游戏是一种用木制、骨制或塑料制成的长方形骨牌,玩时将骨牌按一定间距排列成行,保证任意两相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下.只要推倒第一块骨牌,就必然导致第二块骨牌倒下; 而第二块骨牌倒下,就必然导致第三块骨牌倒下...,最后不论有多少块骨牌都能全部倒下.请同学们思考所有的骨牌都一一倒下蕴涵怎样的原理?
探究点一 数学归纳法的原理
思考1 多米诺骨牌游戏给你什么启示?你认为一个骨牌链能够被成功推倒,靠的是什么?
答 (1)第一张牌被推倒;(2)任意相邻两块骨牌,前一块倒下一定导致后一块倒下.结论:多米诺骨牌会全部倒下.
所有的骨牌都倒下,条件(2)给出了一个递推关系,条件(1)给出了骨牌倒下的基础.
思考2 对于数列{an},已知a1=1,an+1=,试写出a1,a2,a3,a4,并由此作出猜想.请问这个结论正确吗?怎样证明?
答 a1=1,a2=,a3=,a4=,